

Wavelength Shifting Fiber

Carl Bromberg
Michigan State University

Director's Review of NOvA August 16, 2006

WLS Fiber for NOvA

• NOvA signal generation

- Liquid scintillator in a highly reflective cell
- Wavelength shifting (WLS) fiber loop
- Avalanche photodiode (APD)

WLS fiber features

- Immersed in liquid scintillator
- Only long-λ light from U-bend reaches APD
- APD QE > 80% at long wavelengths
- U-bend with small diameter ~70 mm

Fiber R&D

- Obtain firm quotes for high quality fiber
- p.e. yields, fiber survival and optimization
- Develop QA tools

Fiber price

- Two day visit to Kuraray
 - NOvA management visitors: C. Bromberg, B. Choudhary, and R. Ray
 - Met by Y. Shiomi (sales representative and guide) in Tokyo
 - Train to west coast of Japan, to Nakajo fiber production facility
 - O. Shinji (Special Staff), S. Takyama (QC section), S. Gotanda (plant GM)
 - Tour included inspection of entire production process (mostly proprietary)
 - Meet in Tokyo with K. Kimura (Manager) & H. Muroi (Section Manager)
 - Commodity, transportation, and exchange rate protections are in contract
- Current (final) quote:

Diameter	Quantity: 18,000 km	22,000 km
0.8mm	\$0.75/m	\$0.72/m
0.7mm	\$0.63/m	\$0.60/m

- For larger quantity 0.8mm, price is 16% less than at CD-1 (\$0.86/m)
- FY08-11 delivery, 25% slower rate, same four year period as CD-1
- It is doubtful that any other source will surface

Cost: WBS 1.3/2.3 WLS Fiber

NOvA Project 20 kT

WBS x.3 WLS Fiber	Estimated Cost (FY06 \$M)	Contingency Estimate (FY06 \$M)	Contingency (%)	Total Project Cost (FY06 \$M)			
Construction w indirects							
M&S	13.7	3.8	28%	17.5			
Labor	0.0	0.0	4%	0.0			
Construction total:	13.7	3.8	28%	17.5			
R&D							
M&S	0.15	0.00	0%	0.15			
Labor	0.09	0.00	0%	0.09			
R&D total:	0.24	0.00	0%	0.24			

WLS Fiber Milestones

		lova S 2.3 Mil	3 - '	W	LS	Fi		r														
Activity ID			FY08				FY09				FY10			FY11				FY12			FY1	
	Activity Deoc.	Q	1 Q2	2 (2)	3 Q4	Q	1 Q	2 Q	3 Q4	4 Q1	1 Q	2 Q3	Q4	Q1	Q2	Q3	Q4	Q1 C	2 Q	3 Q4	Q1	QZC
2.3 Wave-L	ength-Shifting Fiber					Γ				Т				Γ								
2.3.1.1.5	Release purchase orders-near detector		<u></u>			T				T				Γ								
2.3.1.2.5	Release purchase orders-far detector		Å																			
2.3.2.2.1.3	WLS fiber production begins		Å			T				T				Г								
2.3.2.2.1.4	WLS fiber production for 5 kt completed					T	<u> </u>			T				Γ								
2.3.2.2.1.5	WLS fiber production for 10 kt completed					T				T	Ą			Γ								
2.3.2.2.1.6	WLS fiber production for 15 kt completed					T				T				١,	Δ							
2.3.2.2.1.7	WLS fiber production for 20 kt completed	T				T				T							\exists	Ą				_
2.3.2.2.1.8	WLS fiber production completed (25 kt)(reserved)					T				十				Т			\exists	4				_

Previous fiber R&D

Minnesota & Indiana

- Cosmos liquid scintillator calorimeter prototype, Bicron fiber, no obvious loss (±20%) in 10 years
- 10 WLS fiber loops in 50% pseudocumine @ 42 °C, no change in transmission over a few months.
- p.e. yields for muons in NOvA cell, liquid scintillator filled

Fiber survival tests by Kuraray

- Fluorinated polymer & acrylic claddings are insoluble in pseudocumine
- Polystyrene core is soluble, but is protected by two layers of cladding
- Fibers in 5-20% pseudocumine, 140 days, ~ 15% light loss, no concentration dependence, no 0% control.
- Nevertheless, Kuraray expects NOvA to take responsibility for fiber survival in liquid scintillator

Current fiber R&D

- 150 m fiber samples distributed to R&D labs in June
 - Baseline Fiber: diameter 0.8 mm, K27 dye @ 200 ppm
 - MINOS optimized K27 dye at 200 ppm for fibers with 1.2 mm diameter,
 8 m long, with a PMT photodetector
 - NOvA fiber is 0.7-0.8 mm diameter, 16 m long, APD photodetector
 - Obtained fiber with 0.6, 0.7, 0.8 mm, each with K27 dye at 150, 250, 300 ppm
- Primary R&D responsibilities (poaching OK)
 - Verify p.e. yields in NOvA liquid scintillator (CalTech: J. Trevor)
 - Fiber torture tests to determine damage limits; is 0.7 mm OK? (UCLA: K. Lee)
 - Light yield & attenuation vs wavelength (UT Dallas: E. Fenyves)
 - Measure relative light yields in simulated NOvA cell & develop QA tools for production (MSU: CB, R. Richards, B. Page)
- For prospective Italian collaborators, samples sent to Ferrara
- 5 km of baseline fiber to Minnesota for module factory R&D
- R&D results available this FY

Module assembly and lamination

- At MSU, Ron Richards and CB have been investigating alternatives to Epoxy adhesives for critical NOvA assembly steps:
 - Joints and seals of endplate and fiber manifold to make 53 ft long PVC modules
 - Laminations of 372 PVC modules into 31 layer blocks, weighing 150 Tons
- Ashland Chemical Corp's Emabond process
 - RF absorbing plastic "gasket" melts to WELD seals and joints between plastic parts.
 - Impressive list of existing commercial applications (high pressures, fluids from gasoline to blood, high temperatures, food containers, automotive body parts, ...)
 - Heat-cool cycle < 1 min., NO particulates, inert, mechanically stable, ...
 - Proof of principle tests have established viability of technique for NOvA
- Ashland met with CB and NOvA engineeers Richards, Chase, Pushka, & Guarino
 - Proposals are being prepared by Ashland for
 - Prototyping endplate and welding machine for recently produced 16-cell PVC extrusion
 - Tests of PVC lamination strength in shear, peel, tension, ...
 - Tests of 4 layer laminations of 16-cell extrusions
 - Tests of joining two 16-cell extrusions into 32-cell units
 - Design and prototyping of manifold adaptor plate
 - Preliminary assembly at Ashland plant of modules for the Integration Prototype